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Abstract. We investigate the problem of the double charge transfer cross-section of a helium atom by
bare ions of helium and lithium at energies ranging from 60 to 200 keV/amu. The boundary corrected
continuum intermediate state approximation (BCCIS) is used to calculate the capture cross-section in the
ground state. The continuum state of each electron has been accounted for in the formalism. The present
results are compared with existing theoretical and experimental results.

PACS. 34.70.+e Charge transfer

1 Introduction

Double charge transfer in collisions of fully stripped ions
with atoms has attracted a great deal of both theoret-
ical [1–5] and experimental works [6–8] for more than
a decade. In most of the cases, the chosen target atom
is the helium atom. In particular, studies on collisions
of He2+ with He atom are important both from aca-
demic point of view as well as practical applications. From
application point of view, this resonant double charge
transfer process is one of the most important processes
in the determination of transport properties of doubly
charged ions in controlled high-temperature thermonu-
clear fusion plasma and the energy balance therein. Dou-
ble electron capture cross-sections have been calculated
quantum mechanically by McGuire and Weaver [9], Gayet
et al. [1] and Ghosh et al. [2]. Adopting the same princi-
ple, Chatterjee and Roy [10] and Olson [11] have studied
two electron capture in the framework of classical mechan-
ics. Crother and McCarrol [12] have employed the contin-
uum distorted wave (CDW) approximation with a view
to include continuum-continuum coupling into the scheme
with the continuum correlation between the active elec-
trons adopted through the Pluvinage [13] wavefunction.
Gravielle and Miraglia [3] have formulated the problem
in the framework of the impulse approximation in such
a way that double electron capture takes place through
a singly excited state of the target atom. The four-body
formulation (4B) is basically the extension of the 3-body
formulation of collision problems in the framework of dif-
ferent approximations applied at high energies. Belkic [5]
has calculated the double electron capture cross-sections
in the ground state in collisions of He2+ and Li3+ with He
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atoms within the Coulomb-Born (CB) approximation in
the energy range of 250–2000 keV respectively. This was
subsequently extended to the boundary corrected contin-
uum intermediate state (BCIS) approximation [4] origi-
nally proposed by Mandal et al. [14] into the four-body
formalism of the He2++He collision. In doing so, he made
a simplifying replacement of an exact on-shell coulomb
wave for relative motion by an eikonal phase and as such,
he failed to provide any cross-section data below a pro-
jectile energy of 700 keV. Gayet et al. [1] have calculated
the double electron capture cross-sections for the above-
mentioned processes in the framework of a continuum dis-
torted wave with an eikonal initial state (CDW-EIS) in the
energy range of 0.4–30 MeV. They have calculated the two
electron capture cross-sections in the ground, singly and
doubly excited states. However, the results of Gayet et al.
are lower by an order of magnitude in comparison with
experimental observations. Under such circumstances, we
are interested in studying such a double electron capture
process in the collision of heavy ions with atoms in the
framework of the BCCIS-4B theory. The essence of the
theory lies in the fact that (i) it satisfies the correct bound-
ary condition and (ii) the continuum state of each electron
has been accounted for within the formalism.

The organization of the paper is as follows. The the-
oretical formulation is discussed in Section 2. The calcu-
lated results are discussed with graphs in Section 3. Fi-
nally it ends with some concluding remarks in Section 4.
Atomic units are used unless otherwise stated.

2 Theoretical formalism

A collision diagram is shown in Figure 1. The total
Hamiltonian of the whole system may be written in terms
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Fig. 1. Coordinate representation for the reaction of He2+,
Li3+ with a He atom.

of channel Hamiltonians (initial and final) and channel
interactions (initial and final) in the form
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where the total kinetic energy operator, H0 may be writ-
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Here µi, µf , a and b are the appropriate reduced masses
associated with the relative coordinates �RT , �RP , �ri (i =
1, 2) and �si (i = 1, 2) respectively. A transition amplitude
may be defined as

T
(−)
if = 〈ψ−

f |Vi|ψi〉, where ψi = ei �Ki·�RTϕi(r1, r2) (3)

and the total scattering wave function in the exit channel
satisfies the Schrödinger equation

Hψ−
f = Eψ−

f . (4)

We can made the approximation,

ψ−
f = ψ

BCCIS(−)
f . (5)

There ψ
BCCIS(−)
f is the approximate form of the total

wave function of the whole collisional system in the on-

shell approximation and may be written as

ψ
BCCIS(−)
f = Nei �Kf ·�RPϕf (�s1, �s2)
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× 1F1{−iα3; 1; i(KfRT + �Kf · �RT )} (6)

where α1 = α2 = ZT /vf and α3 = ZPZT /vf .
So the transition amplitude for the two-electron tran-

sition may be written as
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where A is a constant connected with the normalization
of three confluent hypergeometric functions. In the case of
a heavy particle collision, it has been shown [15] that

1F1{−iα, 1; i(KfRT + �Kf · �RT )} ≈

1F1{−iα; 1; i(KfR+ �Kf · �R)}. (8)

Using the integral representation of the confluent hyper-
geometric function, the transition matrix element may be
written as

T
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where N is some constant originating from the initial and
final bound state wave functions and the normalization of
confluent hypergeometric function. Θ (ε, δ1, δ2, λ1, λ2) is
the parametric differential operator used to generate the
appropriate wave functions. Here the explicit form of J
may be written as

J =
∫
d�r1d�r2d�R e

i �Ki·�RT e−i �Kf ·�RP eit1�vf ·�r1eit2�vf ·�r2

× eit3 �Kf ·�R e
−β1r1

r1

e−β2r2

r2

e−λ1s1

s1

e−λ2s2

s2

e−λ3R

R
(10)

where β1 = δ1−it1vf , β2 = δ2−it2vf , and λ3 = ε−it3Kf .

Taking the Fourier transform of terms involving r1, r2,
s1, s2 and R and using the properties of the delta function,
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J may be reduced to

J =
16
π

×
∫
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where �p1 = �p−t1�vf , �p2 = �p−t2�vf , �p3 = �Ki+t3 �Kf −b �Kf ,
and �p = �Ki/(2 +mT ) + �Kf/(2 +mP ).

The integral equation (11) is calculated by using the
Feynman parameterization technique such as
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Using the simple analytical result of the two-

denominator integral in the form [16,17], we can calculate
the �q1 integration,
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where �p ′
2 = �p3 − x�p1 and ∆1 = λ3 +∆.

Applying the Lewis integral representation [17] we can
express equation (14) as
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We have simplified the terms a′, b′ and c′ in such a way
that each term comes out to be a linear function of t2
and t3 only. So we can express equation (15) as

J = 32π3

1∫
0

dx

∆

∞∫
0

dy

A+ Bt2 + Ct3 +Dt2t3
. (16)

Fig. 2. Variation of the double charge transfer cross-sections as
a function of energy for the interaction He2++He(1s2). Theory:
(—) present results; (�) results of Gayet et al. [1]; (�) results of
Gravielle and Miraglia [3]; (◦) results of Belkic [5]. Experiment:
(�) results of DuBois [6]; (•) results of de Castro et al. [7].

Finally, from equation (9), we may find

T
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Now the complex contour integration of equation (18) may
be evaluated by applying Cauchy’s residue theorem to ob-
tain a general term in the form

K = −Aiα2−iα3−1(A+B)−iα2(A+ C)iα3

× 2F1

(
iα2,−iα3; 1;

BC −AD

(A+B)(A+ C)

)
. (19)

3 Results and discussions

The variation of the double electron capture cross-section
as a function of the incident projectile energy is given
in Figures 2 and 3. In all cases, the calculations have
been carried out using the wavefunctions given by Lin
et al. [18]. We have checked that, with the use of one,
two and five parameter-variational wavefunctions of He by
Lin et al. [18], the computed results agree within 7–10%
at 200 and 1000 keV respectively. For this reason and due
to lack of sufficient computational facilities, we have ac-
quired all cross-sections with one parameter wavefunction
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Fig. 3. Variation of the double charge transfer cross-section as
a function of energy for the interaction Li3++He(1s2). Theory:
(—) present results; (�) results of Gayet et al. [1]; (◦) results
of Belkic [5]; experiment: (�) results of Shah and Gilbody [8].

of He only. Here the three-dimensional integrals in the
transition amplitude are Lewis, Feynman and a complex
contour integration, which have been mentioned earlier.
The Lewis integral and the Feynman integral are evalu-
ated numerically with the 60-point and 48-point Gauss
Legendre quadrature method respectively. The complex
contour integration (t1) in the final transition amplitude
is transformed into a real one dimensional integral [19]
from 0 to 1 which has been sub-divided into several parts
and each sub-division is integrated using a 36-point Gauss
Laguerre quadrature method which is reasonably accu-
rate. Finally, integration over the scattering angles has
been performed with the 44-point Gauss Legendre quadra-
ture method which enable an accuracy of 1% for the inte-
grated cross-sections to be obtained.

The variation of double charge transfer cross-sections
with projectile energies are shown in Figure 2 for the He2+

ion and Figure 3 for the Li3+ ion along with the exper-
imental results of de Castro et al. [7], DuBois [6], Shah
and Gilbody [8] and the theoretical results of Graville and
Miraglia [3], Belkic [4,5], Gayet et al. [1]. From Figure 2,
we find that our theoretical results are in good agree-
ment with the experimental results below 800 keV and
at 2000 keV but is disagreement at 1200 keV. The results
of the double electron capture cross-sections in the frame-
work of the four-body version of the boundary corrected
by the first Born (CB1) approximation are in disagreement
below 1600 keV but agree well at high energy. Double elec-
tron capture cross-sections calculated by Gayet et al. [1]
in the framework of the four-body continuum distorted
wave (CDW-4B) approximation are in disagreement over
an intermediate energy region but the divergence gradu-
ally diminishes as the projectile energy increases. From
Figure 3 we can see that in the intermediate energy re-
gion, our results are favorable only with the experimental
results of Shah and Gilbody [8], but above 900 keV, large
discrepancies occur with both the theoretical results of
Belkic [5] and Gayet et al. [1].

4 Concluding remarks

The theoretical findings in the framework of BCCIS-4B
for double electron capture cross-sections in collisions of
He2+, Li3+ with He atoms have been found to be in rea-
sonable agreement with other theoretical and experimen-
tal observations. The reasons for such success may be due
to the following facts: (i) the total scattering wave function
satisfies the proper boundary conditions, (ii) the perturb-
ing potential falls faster than the coulomb potential and
(iii) the intermediate continuum states of the two elec-
trons have been taken into account. In this context it may
be pointed that in such a formulation the dynamic cor-
relation of the active electrons is absent in the process
of two-electron transfer. Only the static correlation of the
electron has been accounted for through the electron wave
functions in the initial and final state respectively.
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